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 Abstract: Formation flying is emerging as an important technology on achieving the tight mission 
requirements of imaging and remote sensing systems, especially radio interferometry and synthetic 
aperture radar (SAR) applications. A higher absolute and relative position and orbit knowledge is 
always sought in these kinds of applications. Such requirements can be met to a large extent by 
manipulation of GPS data. Carrier-phase Differential GPS (CDGPS) measurements can also be used 
to further increase the accuracy in relative position and orbit determination dramatically.  
 
Using a geometric model has a clear advantage of generality and wide applicability, independent of 
complex dynamic models for different types of platforms. Hence, the proposed approach uses input 
from GPS receiver on the master satellite and pseudorange based absolute position estimates from the 
slave satellites. In addition, single-difference (SD) phase measurements between the master and the 
slave satellites are also required, which provide very accurate relative distance information. SD 
information is input into a Kalman filter to determine the relative orbits within the formation to a 
higher precision.   
 
In this paper, we present a geometrical approach to relative orbit determination and present an 
algorithm for the refinement of position estimates through combining carrier-phase and pseudorange 
data. 
 
 

1. Introduction 
 
Formation flying is acknowledged as a crucial 
technology for many planned space missions. 
In most, if not all, of these missions relative 
orbit determination is of very high importance. 
These missions include proposed stellar 
interferometry formation under NASA’s New 
Millennium Program and LEO missions for 
atmosphere and gravity modelling and for 
coordinated Earth observing1.   
 
Global Positioning System (GPS) is proven as 
an accurate positioning and orbit 
determination tool; furthermore, it leads to not 
only a reduction in mass, cost and the power 
requirements but also an increased satellite 
autonomy, thus reduced ground operation 
costs4. Carrier-phase differential GPS 

(CDGPS) is demonstrated to be useful in relative 
positioning and orbit determination in indoor and 
outdoor experimental settings4,5, although it is yet 
to be proven in a space mission. 
  
The conventional GPS based precise orbit 
determination strategies rely on data from a 
network of terrestrial GPS receivers as well as the 
spaceborne receiver. The estimation procedure is 
complex and lengthy, consisting of integration of 
the GPS data with accurate dynamic models of the 
low Earth orbit (LEO) satellite2, 3. These strategies 
rely greatly on the GPS measurement strength, 
especially for the low altitude spacecraft. 
However, a geometric approach with no complex 
dynamic modelling has the advantage of 
simplicity, wide applicability and increased 
autonomous operation.  
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In view of the above discussion, the theme for 
the project has been chosen as “relative orbit 
determination in a LEO formation using GPS 
measurements”. The work includes a basic 
GPS simulator for real-time pseudorange and 
carrier-phase data processing (position 
determination) and processing the data using 
an Extended Kalman Filter for relative orbit 
determination. The entire procedure is 
geometry based, autonomous and essentially 
independent of the platform. 
 
The main objective is to properly evaluate the 
method to determine the relative orbit with a 
reasonable accuracy, autonomously and in 
real-time. The method is to be properly 
evaluated for precision and possibility for an 
onboard application. The only required input is 
the GPS signal; however, intense intersatellite 
communications is also vital. Note that, an 
important design driver is to minimise 
computational load, given the fact that 
processing power is a valuable commodity on 
the orbit.  
 
The real-time nature of the problem dictates 
that the integer ambiguity resolution for 
accurate CDGPS measurements should also be 
carried out in real-time. Although the details 
of the ambiguity resolution techniques are 
beyond the scope of this paper, a brief 
overview of the ongoing research is presented. 
 
 

2. System Description 
 
This paper studies the orbit determination 
problem for two satellites in formation; 
however, the basic principles do not rely on 
the number of satellites in the formation. 
Hence, the solution to the orbit determination 
problem can be extended to any number of 
satellites.  
 
The formation is assumed to be in a near-
circular low Earth orbit (LEO) and within 
close proximity of each other (<20km). This 
region is particularly convenient since the 
number of GPS satellites in view is very high 
(11 to 17), providing a favourable geometry 
(or a low geometric dilution of precision 
(GDOP)). The LEO region is to host a number 
of GPS based formation flying missions in the 
near future. 

 
The formation is assumed to comprise two 
identical satellites, one of which is the master and 
the other is the slave. This designation is arbitrary 
and, since the hardware is assumed to be identical 
they can switch roles any time in the mission. At 
this point, the formation architecture is not 
important; however, as the number of satellites 
increase, “decentralised” control, where phase 
differences are between assigned pairs in the 
formation, or “centralised” control, where all 
phase differences are between the master and each 
slave satellite, become an important parameter. In 
the former approach the computational load is 
distributed between the satellites, in the latter the 
master satellite handles the entire computational 
load. Corazzini et al. addressed the issue of 
centralised vs. decentralised approaches in a basic 
three satellite setting, open to extrapolation using 
the results as building blocks8. 
 
It is possible to have fully autonomous absolute 
orbit determination by each member of the 
formation, since this relies on pseudorange 
measurements by individual satellites. However, 
relative position determination requires the 
transfer of phase information data between the 
satellites. Therefore, continuous communication 
between the two satellites is crucial. 
 

Absolute
(Coarse)

Positioning
Pseudorange

Carier phase
information

Relative (Fine)
Positioning

System model
(Hill's eqn)

Extended
Kalman Filter

Relative Orbit
Estimate

 
Figure 1 System Block Diagram 
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A layered approach is used to determine the 
relative orbit (Figure 1). Absolute state is 
determined from the pseudorange 
measurements for each satellite (Coarse 
Positioning). Carrier-phase information is then 
evaluated using a simple least squares 
estimator, to find the relative position 
estimates. The resulting high accuracy relative 
position estimates are input to an Extended 
Kalman Filter (EKF) to determine the relative 
orbit. The EKF comprises small matrices in 
simple forms. Furthermore, convergence is 
quicker. This step-by-step approach is 
different from the common procedure in the 
literature, where the measurements themselves 
are input to a more complex Extended Kalman 
Filter and are solved simultaneously5,8.      
 
2.1 Absolute (Coarse) Positioning 
 
Coarse Positioning is the absolute position 
determination module of the algorithm. 
Position determination is carried out in 
discrete time using simulated pseudorange 
measurements, solved by the least squares 
method. The details of the procedure are 
documented in many sources9, 10, 11 and will 
not be presented here. 
 
The GPS receivers are assumed to be tracking 
four GPS satellites simultaneously, while 
continuously monitoring the geometric 
dilution of precision (GDOP) parameter. The 

tracked satellite set is changed frequently, keeping 
minimum GDOP at all times.  
 
Absolute position ranging noise is estimated to be 
5m (based on error budgets presented in11, no 
Selective Availability). 
 
 
2.2 Relative (Fine) Positioning 
 
Fine Positioning is the relative position 
determination module of the algorithm and is very 
similar to Coarse Positioning in structure and 
solution method. Relative positioning is carried 
out in discrete time using simulated carrier-phase 
difference measurements solved by the least 
squares method. (See Figure 2 for the geometry of 
the problem.) 
 
Formulation begins with the well-known single 
difference (SD) equation in its general form10: 

kmkmkmkm fSNSD τφ +++=  (1)
where 
k and m refer to the receiving satellites 
φ is the transmitted satellite signal phase as a 
function of time 
N is the unknown integer number of carrier cycles 
from the source to the receiver 
S is phase noise due to all sources (e.g. receiver, 
multipath) 
f is the carrier frequency 
τ is the associated satellite or receiver clock bias. 

Slave
Satellite

Master
Satellite

SD
j

GPS
Satellite j

b

rj

r2 j
r1 j

 
Figure 2 CDGPS Geometry (Not to Scale)
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The φ term is supplied by the phase counter of 
the GPS receiver and is known. N term is the 
integer ambiguity and is assumed known to a 
very good accuracy (see section 2.4 for integer 
ambiguity resolution). S is the phase noise 
term and simulated as white gaussian noise 
with σ=20mm.  Finally, τ is assumed to be 
negligible, since Absolute Positioning 
algorithm corrects the system clocks of the 
formation with respect to the GPS system 
clocks to a very good accuracy. Thus, 
combining all the noise affects in the phase 
noise term, the SD term is assumed known to 
20mm accuracy. 
 
An equation similar to Eq.(1) can be written 
for each received GPS satellite. 
 
Baseline vector definition in the vector 
notation is: 

j

j

j
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rbSD
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⋅=  (2)

where r1
j is the range vector from the master LEO 

satellite from the origin in Earth Central Inertial 
(ECI) coordinate system and b is the baseline 
vector, defined from slave to master LEO satellite. 
The definitions in vector form are, 

11 rrr j
j −=  (3)

12 rrb −=  (4)
Inserting the two vector definitions into (2) yields 
the magnitude, 
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Writing the above equation in scalars (where r = 
x.i+y.j+z.k) and carrying out the dot product 
operation in scalar form, 
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Defining,  
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and inserting into (6), 
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The SD equation is a function of the baseline (or 
relative position), the position of master LEO 
satellite and the GPS satellite. The position 
estimate of the master LEO is available from the 
Coarse Positioning; GPS position is known with 
a reasonable accuracy and baseline is the 
unknown quantity, for which an initial estimate 
available from the Coarse Positioning solution 
for the slave LEO satellite. There are as many 
such equations as the number of received GPS 
satellites. 
 
Rather than solving this set of non-linear 
equations, linearisation works better and is 
computationally less expensive. The linearised 

forms of the vectors (shown in scalar notation) is 
simply the combination of the estimated value 
and the error part, 

relrelrel

relrelrel

relrelrel

zzz
yyy
xxx

∆+=
∆+=
∆+=

ˆ
ˆ
ˆ

 (9)

Note that, b = xrel.i+yrel.j+zrel.k. Thus, the 
following is the linearisation of SD vector with 
respect to the baseline vector b, 

jjj SDDSSD ∆+= ˆ  (10)

b
b
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∂

∂=∆ ˆ  
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The last equation (Eq.(11)) requires the 
determination of the partial derivatives of the SD 
vector in the xrel , yreland zrel directions. 
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Note that, the GPS satellite position in the 
equation is known and master LEO position is 
estimated from the Coarse Positioning solution; 
hence, the partial differential terms themselves 
are estimated quantities. 
 
Rearranging (11) and introducing the δ of the 
parameter for simplicity, which is the difference 
between the estimated and the measured value 
(i.e., the correction applied in the iteration); 
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(13)

This equation can be written for all received 
GPS satellites. Combining all SD equations in 
matrix form, 

relXHSD δδ ⋅=  (14)
The equation is then solved for δXrel iteratively 
until convergence. 
 
The solution procedure detailed above is very 
similar to pseudorange based position 
determination. However, since the noise term is 
on the order of a few tens of millimetres, the 
resulting error is also very small.  
  
2.3 Integer Ambiguity Resolution 
 
There exists a vast literature on integer 
ambiguity resolution in carrier-phase 
differencing. Following is strictly not a 
comprehensive evaluation of all possible 
methods; it is intended to merely give an idea of 

the current real-time ambiguity resolution 
schemes.  
 
Kim & Langley6 have reviewed the various 
ambiguity estimation and validation schemes. 
The ambiguity resolution techniques are 
classified in three groups: 
a) In the measurement domain: This is the 
simplest technique where L1 and L2 signal 
frequencies are used in combination to smooth 
the C/A or P-code pseudoranges, which, in turn 
are used to estimate the integer ambiguities. 
b) In the coordinate domain: This is the oldest 
resolution technique and involves using only the 
fractional value of the instantaneous carrier-
phase measurement. It provides relatively poor 
computational efficiency. 
c) In the ambiguity domain: This technique 
attempts to evaluate the resolution in three steps; 
the float solution, integer ambiguity estimation 
and the fixed solution.   
 
Although the first two groups are relatively 
straightforward, there are many different 
techniques in the third group. Some 
representative techniques are as follows6: 
• Least Squares Ambiguity Search Technique 

(LSAST)  
• Fast Ambiguity Resolution Approach 

(FARA) 
• Modified Cholesky decomposition method 
• Least-squares Ambiguity Decorrelation 

Adjustment (LAMBDA) 
• Null space method 
• Fast Ambiguity Search Filter (FASF) 
• Optimal Method for Estimating GPS 

Ambiguities (OMEGA) 
 
The aforementioned techniques differ from each 
other in terms of the computational efficiency of 
the search process6.  
 
The success of the ambiguity resolution 
technique decreases with the increasing baseline 
distance, the presence of multipath as well as 
increased ionospheric activity7. 
 
The success rate of the ambiguity resolution will 
depend on the technique applied, visible GPS 
satellite geometry, baseline distance, multipath 
and other environmental effects, particularly the 
ionosphere. However, validated solutions for 98-
100% of the time are reported7. 
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For the purposes of this paper, integer ambiguity 
is assumed resolved perfectly for all the 
measurements. 
 
2.4 Extended Kalman Filter (EKF) Design 
 
The solver algorithm chosen for the relative 
orbit determination task is the Extended Kalman 
Filter. Recursive and real-time, it does not 
require storage of large amounts of data. It is 
relatively simple and computationally 
inexpensive to implement. Furthermore, it takes 
into account the dynamic model of the system. 
 
The estimated states are the relative state of the 
slave satellite with respect to the master satellite. 
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Note that x’, y’, z’ are the radial, along-track and 
cross-track curvilinear coordinates (prime is 
introduced to prevent confusion with the 
previous inertial coordinate notation). 
 
Linearised system dynamics model is based on 
Hill’s equations with a simple, circular, two-
body reference orbit: 
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In Hill’s equations, x’ and y’ are coupled to each 
other; however, z’ is not coupled to the other 
axes. It is possible to take advantage of this 
property in a computational economy sense. 
Setting up a single EKF for the six states will 
require frequent usage of 6x6 matrices. Instead, 
it is more advantageous to set up two EKF, one 
for the coupled x’ and y’ states and one for the 
uncoupled z’ states. This will require 4x4 and 
2x2 matrix operations in each step.  
 
Finally, the outputs of the Relative Positioning 
module are input to the EKF as measurements, 
which simplify the measurement equation to a 
great extent: 
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3. Preliminary Results and Analysis 
 
To evaluate the performance of the system 
delineated above, several tests are conducted 
using a numerical simulator. It simulates the 
GPS constellation as well as the formation 
satellites, however the simulator does not 
include an orbit propagator and uses the 
ephemerides data from the commercial Satellite 
Tool Kit © software. The simulator is still under 
development and the results should be treated as 
preliminary.  
 
The simulation comprises the full GPS 
constellation and two satellites at 600km altitude 
sun-synchronous orbits. Sampling time is 10 
seconds and the total simulation duration is 12 
hours. Noise magnitudes for Absolute (Coarse) 
and Relative (Fine) Positioning modules are 
assumed to be 5m and 20mm, respectively. 
 
Although assessing the accuracy of the Coarse 
Positioning algorithm is not one of the principle 
aims, it is still required to check whether it 
yields acceptable performance, since the output 
of this module will be input to the Fine 
Positioning module. Figure 3 illustrates the 
performance of Coarse Positioning module 
under different noise magnitudes. The error 
corresponding to 5m noise is approximately 5m 
per axis, which is consistent with what the 
literature suggests (no Selective Availability)11. 
The figure also shows the clock bias error term 
(shown as C.DB) in terms of distance.     
 
From the relative orbit point of view, more 
important is the error in the Relative Positioning 
module. Figure 4 presents the relative 
positioning error with respect to the noise 
magnitude. Although noise modelling is not 
highly articulated (single difference 
measurements corrupted with noise), it 
demonstrates that cm level accuracy is 
achievable with CDGPS solution. Relative 
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Positioning algorithm requires three or four 
iterations to achieve this result.  
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Figure 3 Error vs. Pseudorange Noise Magnitude 

for the Absolute Positioning Module. 
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Figure 4 Error vs. SD Noise Magnitude for the 
Relative Positioning Module 

 
The error in relative position in inertial 
coordinates after 20mm noise magnitude is 
shown in Table 1. 
 

Table 1 Position Error for Relative Positioning 
Module (in ECI Coordinates) 

Error St. Dev. 
X Axis Relative Position (mm) 8.88 
Y Axis Relative Position (mm) 10.61 
Z Axis Relative Position (mm) 11.30 
Total 3D Positioning Error (mm) 17.86 

 
It should be noted, however, Relative 
Positioning algorithm is not very sensitive to the 
absolute positioning error. To provide a 
challenge for the code, pseudorange noise has 
been increased from 5m to 50m per axis. 
Following the linearity observed in Figure 3, 
absolute error has also increased to ten times the 
original absolute positioning error. On the other 

hand, relative positioning error increased by 
approximately 22.8%, 24.7% and 65.0% on 
inertial X, Y and Z axes, respectively. 
Nevertheless, cm level accuracy is maintained. 
 
Once the Relative Positioning module solves for 
the relative positions in the inertial frame, the 
relative position estimates are transformed into 
the curvilinear along-track, cross-track and 
radial coordinates for use with Hill’s equations 
in the Extended Kalman Filter (EKF). 
 
Although cm level relative positioning accuracy 
generated by the least squares solution is 
sufficient for many applications, relative orbit 
determination requires not only the positions but 
also the velocities. The velocities are to be 
evaluated in the EKF, completing the orbit 
definition.   
 
 The EKF module is tested with external input 
from STK. The external relative position data is 
corrupted with noise and input as the 
measurements. The total 3D magnitude of the 
error from the Relative Positioning module has 
been determined as 17.86mm (Table 1). Thus, an 
equivalent noise of 10.31mm per axis has been 
applied. The results are presented in Table 2.    
 

Table 2 Position and Velocity Error for EKF 
Module (in Relative Coordinates) 

Error St. Dev. 
Relative Radial Position (mm) 10.35 
Relative Along-track Position  (mm) 10.10 
Relative Cross-track Position (mm) 10.18 
Total 3D Relative Error (mm) 17.68 
Relative Radial Velocity (mm/sec) 2.15 
Relative Along-track Velocity (mm/sec) 2.11 
Relative Cross-track Velocity (mm/sec) 2.06 

 
As previously noted, the main aim of the EKF 
module is to determine the relative velocities 
accurately. Due to the high confidence in the 
relative position measurements, EKF does not 
attempt to improve relative positions further 
with the system equation. Hence, the relative 
position estimates are improved only marginally. 
However, the velocities are determined with 
very high accuracy, on the order of 2mm/sec. 
The algorithm does not employ Doppler or any 
other velocity measurements; nevertheless it 
provides reasonably accurate velocity 
information. 
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Radial Velocity Error 
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Along-track Position Error 
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Along-track Velocity Error 
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Cross-track Position Error 
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Cross-track Velocity Error 
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Figure 5 Relative Position and Velocity Error History for the First 1500 Second

 
There is one other aspect of the proposed 
algorithm which is not revealed by Table 2. 
Figure 5 illustrates the behaviour of the error in 
relative positions and velocity. The relative 
positions converge instantly and the relative 
velocities converge at the third timestep at the 
latest. This is a significant advantage over 
slower converging systems, since it will be 
possible to obtain high precision orbit data 
without delay. Even though GPS signal is lost 
for a while, once the signal is reacquired, EKF 
initialisation takes little time and relative orbit 
information becomes available very quickly.    
Notice, however, this analysis does not take into 
account the effects of signal loss on the integer 
ambiguity resolution scheme. Nonetheless, using 
the state-of-the-art ambiguity resolution 
schemes, initialisation delay time for ambiguity-
free and accurate carrier-phase information is 
minimised. 
 
 

4. Conclusions 
 
This paper is part of the ongoing research to 
establish and evaluate a relative orbit 
determination algorithm. It is designed for real 
time operation onboard the satellite, with the 
emphasis on convergence and speed of 
computation. Within this context, a geometrical, 

CDGPS based approach for precise relative 
positioning has been outlined. This algorithm is 
incorporated in the layered system structure, to 
provide the measurements for the Extended 
Kalman Filter. The resulting algorithm is 
essentially independent of the platform and is 
not limited by the LEO setting, although good 
GPS coverage is essential.  
 
Preliminary numerical simulation results have 
been presented and are shown to provide cm 
level accuracy in relative position and mm/sec 
level accuracy in relative velocity determination. 
Favourable convergence characteristics and the 
simple yet powerful algorithm and precise orbit 
determination are the promising highlights of the 
method.  
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